(=]
b=
[=]
N
=
=3
=

o™
)
-
&
2

&
-
-

Keep it simple - Seven
rules of thumb for effective
software development

by Remi-Armand Collaris & Eef Dekker

Introduction

An important question with respect to implementing a software
development method is how to concretize the method in the or-
ganization and the project which it should serve. This step is eas-
ily forgotten in introducing and applying a new method, and it is
easy to slip into the habit of regarding a full and clean applica-
tion of a method as a goal in itself. Many development methods
(DSDM, Scrum, XP) presuppose this concretization step without
making it explicit. In the Rational Unified Process (RUP), this step
is explicit in its first key principle: “Adapt the Process”. It is by no
means an easy step, since knowledge of and experience with the
method is needed.

Which rules could you use in performing this step? How do you
get to a clear and concrete development process that optimally
supports your project? Which tools do you apply and who will use
them? Below we have listed a few situations, in which this step
should have been taken more consciously:

1. An enterprise bought an expensive tool but did not anticipate
the large amounts of time it costs to implement it and keep it
up-to-date. This results in the tool remaining unused.

2. Review forms are developed, but it takes so much time to fill
them in that everyone avoids reviewing.

3. RUP defines 128 work products. It is decided that all need to
be created. This results in the project coming to a complete
standstill.

4. The project needs to be finished quickly, so a large develop-
ment team is rolled out, but the demanding organization can-
not supply sufficient input to the team.

5. The change procedure takes 3 months at least. This leads to
a large part of the changes not being relevant anymore by the
time they are finally implemented.

6. People responsible for requirements are not available during
system implementation, and therefore the system does not
comply with the customer’s needs.

6 * www.agilerecord.com

7. Alot of time was invested in keeping an up-to-date traceability
between requirements and code, but estimation of changes
does not appear to be any quicker.

In this article, we provide seven rules of thumb which help you
to make the development method of your choice more effective.
These rules were developed during our experiences in various
enterprises, in which we helped to implement modern develop-
ment methods. Following these rules will help to avoid the situa-
tions described above.

Seven Rules of Thumb

All rules presented here follow the same principle: balance cost
and revenues. A measure (document, procedure, application or
a tool) is effective if it yields the correct effect, i.e. an optimal bal-
ance of costs and revenues. Costs and revenues not only apply to
the period of software development, but to the complete lifecycle
of the application and to the context within which the application
is developed and used. An important question in this respect is
what the expected lifetime of the application is and how many
changes are expected.

We often see people being so enthusiastic about the expected
revenues that they lose sight of the costs. Or the other way
around: because of the costs, a “smart” solution is not chosen,
although in the long run the revenues would have outweighed the
costs. Costs or revenues in themselves are not the criterion for a
good decision, but the balance of both is.

Rule 1: Keep the level of ceremony as low as possible

The level of ceremony can be defined as the amount of additions
to the development process for the sake of controlling the pro-
cess and its resulting work products. A higher level of ceremony
implies more formal recording, review and approval and often
more work products, procedure descriptions and more detailed
means of control.

@
=
)
*
)
s
a
=
=
8
&
n
s
!
5
o
°
=

Every organization knows its own “ceremonies”. Usually the big-
ger the organization, the more formal it is. Some examples of
lower and higher levels of ceremony are listed in the table below:
Lower level of ceremony | | Higher level of ceremony |
Information is available in a WIKI, : It is explicitly recorded who must
everyone can look there. be informed, and in what way.
The work products themselves Minutes of every meeting are
mirror what is agreed upon. made and formally approved.
Informal exchange of information : Information is usually exchanged
in writing.

Quality is acknowledged and as- There is a Quality Assurance

sured by the team. department.

Changes can be processed easily. : There is a committee which must

approve changes.
Reviews are held informally. . All review results are recorded.
Standards and guidelines are There are extensive lists of stan-

implicit. dards and guidelines.

Many organizations are unaware of the costs as well as the reve-
nues of their level of ceremony. Many people see formal reviews,
an extensive approval procedure and detailed plans with Gantt
charts as simply indispensable. We have found that asking for
explicit estimates of costs and revenues helps people to become
aware of the amount of overhead brought about by the level of
ceremony.

Rule 2: Keep the team as small as possible

A development team of exactly 1 experienced person who unifies
all roles in himself is most efficient in avoiding handovers. Howev-
er, not only the availability of one person with all knowledge and
skills needed prohibits this option, but also development speed
(time to market), vulnerability (what happens if this single person
gets sick) and safeguarding of knowledge.

Adjust the number of team members to the level of input the de-
mand organization can supply on a continuous basis. It does not
make much sense to install a team of 3 ana-
lysts and 8 developers if the maximum input
the key users can supply is only sufficient for
1 analyst and 2 developers.

Moreover, a bigger team does not have a pro-
portionally bigger productivity, due to a larger
overhead in planning, handovers and depen-
dencies. It may well be the case that a well-
functioning team of 3 developers, an architect, an analyst and a
tester are more productive than the same team but now enlarged
with 3 more developers, an analyst and a tester to meet the time-
to-market. If such a scaling operation takes place toward the end
of the project to meet the deadline, the net effect will be nega-
tive. Many people forget to take into account the learning curve
of new team members and the extra overhead.

Often a few separate, ;
specialized tools better meet
the requirements than a
complete integrated toolset. |

Rule 3: Make as few work products as possible

If you make a list of work products, the questions you need to
ask yourself are:

¢ Who will miss this work product?

* What will go wrong if we don’t make it?

This approach will clarify the purpose of the work product. Will
this work product only be needed for development, or will it also
play a role in future system administration? By knowing who will
need the work product, you can involve this person in producing
it, validating its contents and balancing production effort with the
expected revenues.

The amount of work products for software development depends
on the circumstances of the project, as do their specific form and
comprehensiveness. If a sketch on a whiteboard suffices, it is not
necessary to produce a comprehensive document.

Some work products will be part of the final product, for instance
because they are needed for system administration or future
maintenance and support. If the only thing you deliver is the
application, and the demand organization can use and admin-
istrate it, that is fine for the short term. This is even more likely if
an Agile way of development is applied and all code is accompa-
nied by unit tests and code documentation and kept as simple
as possible by refactoring. However, most applications must be
maintained long after the original developers are gone. In this
case it might be better to have some documentation in place, like
use case specifications, a software architecture document and
system administration document.

Rule 4: Apply the simplest possible approval procedure on as
few work products as possible

Not all work products need to be approved in a formal way. A
similar question as above applies here:
* What goes wrong if a work product is not formally approved?

If the answer is “nothing”, it is clear
that formal approval is not needed. Of-
ten the work products that define the
scope of the project are candidates for
formal approval. Also use case specifi-
cations could be approved in order to
have a common point of reference for
accepting the solution.

Formal approval takes time and energy. On the other hand, it
delivers clarity, baselines and reference points. If there is a clear
mandate of one person approving a work product, this will sim-
plify the process tremendously. For example, a subject matter
expert who has mandate can decide very quickly if a use case
specification is correct. He can do the formal acceptance as well.
It does not add much value to have a person higher in the man-
agement hierarchy accept the use case specification.

www.agilerecord.com 8§

7

Rule 5: Take the simplest toolset that meets your needs

It is often underestimated how well requirements and manage-
ment can be done using only a big whiteboard, brown paper and
post-its, a word processor, spreadsheet, simple modeling tool
and WIKI. Add more only if there is a very clear need or bottle-
neck. Be sure that a solution is already proven in practice and
that you have a good picture of how it will help you before choos-
ing it. Do not only formulate requirements for a tool, but look
at the costs as well. Tools need to be installed, configured and
maintained. The time and expertise needed to do this is often
underestimated.

Formulate tool requirements with concrete improvements in
mind, which can be expressed in terms of revenue. If you balance
costs (purchase, configuration, maintenance, keeping informa-
tion up-to-date) against revenues (savings in time), this balance
may easily turn out negative.

If you have a set of prioritized tool requirements, look at the sim-
plest tools that meet them. Often a few separate, specialized
tools better meet the requirements than a complete integrated
toolset. Integrated toolsets are inherently complex and may lack
the features of specialized tools.

Rule 6: Maintain (explicit) traceability as little as possible

Traceability may mean two things: there is a connection made
between decisions in time, or between work products belonging
together in one baseline. The connection may be made explicitly
(in a tool or spreadsheet) or implicitly by following design rules
or naming conventions. Traceability is often desired because it
may help with:

* Keeping business requirements, high-

detailing requirements, you gain more insight. High-level require-
ments formulated (much) earlier might no longer be relevant.
Hence, we need human inspection here as well. Maintaining
traceability between changing requirements is time-consuming,
even when tools are used. A solution using just human inspection
might be cheaper.

Traceability can be kept implicit in many cases, which is a cheap
approach. For example, naming conventions and object-oriented
development may help. If something is called ‘dossier’ by the
business, then it is a good idea to give the object in the code
which represents the dossier the name ‘dossier’ as well. Things
you can do in reality with a dossier will then be associated with
the dossier in the code. The more perspicuous an application is
built, the better the implicit traceability is.

The worst scenario is that in which explicit traceability is installed
but not kept up-to-date. Outdated information renders the trace-
ability unreliable and hence useless. In this case the investment
in traceability has a negative result, since the effort that has
been put in does not pay at all. Consider explicit traceability only
when its maintenance is guaranteed throughout the applica-
tion’s lifecycle.

Rule 7: Choose the most effective form of communication

The quicker and better your intentions are understood, the more
effective your communication is. The best way to reach this is
to have a live conversation and be enabled to visualize your in-
tentions. The worst way is to send a text document without any
explanation or possibility to raise questions about it. In the figure
below, various communication channels and their effectiveness
are shown.

level and detailed software require-
ments, test cases and implemented
functionality in line;

* Impact estimation, especially when the
original developers are no longer avail-
able;

* Tracing why certain decisions were
made, by whom, and when.

Explicit traceability from high-level to
detail software requirements and imple-
mented functionality may be useful, for
example in situations in which changed
laws or government rules may lead to ad-
aptations in the application. If the right
traceability is in place, this may help in
estimating the impact of these changes.
Keep in mind, however, that traceability
can never serve as a substitute for intel-
ligent, human inspection.

Effectiveness of communication

Paper

Text document

Face-to-lace al
whiteboard

Face-to-face

Videoconferencing

Phone conversation

Blog Wiki
Document with pictures

Sound recording

Traceability may be used to ensure that
all high-level requirements are met. While

8 * www.agilerecord.com

Figure 1: Effectiveness of communication channels

Do not trust blindly in this figure. Keep in mind how a communi-
cation channel is used. In order to convey an intention, a piece
of paper on its own is not very effective. If we have a face-to-face
conversation, a paper document could, however, be helpful to
support the conversation and capture the result for future refer-
ence. It then functions as a means to support the “real” com-
munication.

Conclusion

We have presented seven tested rules of thumb, which can be
used to tailor any software development method. They help you
to implement an effective development process or to improve an
existing process:
' 1. Keepthe level of ceremony as low as possible
2. Keep the team as small as possible
'+ 3. Make as few work products as possible

4

. Apply the simplest possible approval procedure on as few work
products as possible

. Take the simplest toolset that meets your needs

o o

. Maintain (explicit) traceability as little as possible

7. Choose the most effective form of communication

Each of these rules supports balancing of costs and revenues.
Especially revenues that will show up only in the long run might
be hard to quantify, but might be very worthwhile investigating.
Making expected revenues explicit gives you a tool for measuring
the effectiveness of the measures taken. The results of such a
measurement are in turn indispensable for further optimization
of your development process. =

[1] See Frederick P. Brooks Jr., The Mythical Man-Month. Essays on
Software Engineering, Anniversary Edition 1995. The insights that Brooks

formulated in 1975 are still valid.

> About the authors

Remi-Armand Collaris
Remi-Armand Collaris is
a consultant at Ordina,
based in The Netherlands.
He has worked for a num-
ber of financial, insurance
and semi-government in-
stitutions. In recent years,
his focus shifted from
project management to
coaching organizations in
adopting Agile using RUP and Scrum. An important part
of his work at Ordina is contributing to the company’s
Agile RUP development case and giving presentations
and workshops on RUP, Agile and project management.
With co-author Eef Dekker, he wrote the Dutch book
RUP op Maat: Een praktische handleiding voor IT-pro-
jecten, (translated as RUP Tailored: A Practical Guide to
IT Projects), second revised edition published in 2008
(see www.rupopmaat.nl). They are now working on a
new book: ScrumUP, Agile Software Development with
Scrum and RUP (see www.scrumup.eu).

Eef Dekker

is a consultant at Ordina,
based in The Netherlands.
He mainly coaches orga-
nizations in implementing
RUP in an agile way. Fur-
thermore he gives presen-
tations and workshops on
RUP, Use Case Modeling
and software estimation
with Use Case Points. With
co-author Remi-Armand Collaris, he wrote the Dutch
book RUP op Maat, Een praktische handleiding voor
IT-projecten, (translated as RUP Tailored, A Practical
Guide to IT Projects), second revised edition published
in 2008 (see www.rupopmaat.nl). They are now working
on a new book: ScrumUP, Agile Software Development
with Scrum and RUP (see www.scrumup.eu,).

www.agilerecord.com % 9

